PROGRAMME	PROGRAMME OUTCOMES(PO)
B.Sc. (Life Sciences)	• PO1: Acquire knowledge in Life Sciences with a thrust on fundamental principles and theories related to various scientific phenomena and their relevance in day-to-day life.
	• PO2: Graduates attain practical knowledge through hands-on training and project experience to meet the industrial needs.
	• PO3: Graduates develop critical thinking skills to identify, analyze and solve problems of their core areas using modern tools.
	 PO4: Ability to communicate effectively the comprehended scientific data and knowledge, write effective reports, design documentation and make effective presentations.
	• PO5: Ability to appreciate the benefits of experiential learning by inculcating good work habits, time management and self-discipline.
	 PO6: Ability to apply critical thinking, decision making, and reasoning skills in the process of quality education
	PROGRAMME SPECIFIC OUTCOMES(PSO)
B.Sc. (BZC)	• PSO 1 : Emphasizes the diversity in form and function of plants and animals, create an awareness of the impact of Chemistry on the environment, society, appraise role of green chemistry in environment sustainability.
	• PSO 2: Students will be able to pursue higher education & focuses on scientific research, and apply this knowledge in both real life and in a laboratory setting.
	• PSO 3: The fundamental skills within the field of Biology and Chemistry are understood and hence can function effectively as professionals in the Life Science based industries.
	• PSO 4: This programme is vital to further increase their understanding of human health and environmental issues.
	• PSO 5 : Students will be able to understand the fundamental theories, concepts and applications in four basic areas of research in Chemistry (Analytical, Inorganic, Physical & Organic). Develop the ability to explore new areas of research in Chemistry and allied field of Life sciences.

B.Sc (BZCA/BZCS)

- **PSO 1**: Emphasizes the diversity in form and function of plants and animals.
- **PSO 2:** Students will be able to pursue higher education & focuses on scientific research, and apply this knowledge in both real life and in a laboratory setting.
- **PSO 3:** The fundamental skills within the field of Biology and Zoology are understood and hence can function effectively as professionals in the Life Science based industries.
- **PSO 4:** They will be able to use databases, computational tools, decipher scientific data and can act as a bridge between physical & life sciences. Become competent to function both in wet as well as dry labs.

S.No.	Course Code	Course Title	Course Outcomes (CO)
1.	BS104	Paper I Microbial Diversity and Lower plants	On completion of this course, the students will be able to: CO1: Develop understanding on the concept of microbial nutrition. CO2: Classify viruses based on their characteristics and structures. CO3: Develop critical understanding of plant diseases and their remediation. CO4: Examine the general characteristics of bacteria and their cell reproduction/ recombination. CO5: Increase the awareness and appreciation of human friendly viruses, bacteria, algae and their economic importance CO6: Develop critical understanding on morphology, anatomy and reproduction of• Bryophytes, Pteridophytes. CO7: Understanding of plant evolution and their transition to land habitat. CO8: Demonstrate proficiency in the experimental techniques and methods of appropriate analysis of
2.	BS204	Paper-II Gymnosperms, Taxonomy of Angiosperms and Ecology	Bryophytes, and Pteridophytes. On completion of this course, the students will be able to: CO1: Develop critical understanding on morphology, anatomy and reproduction of Gymnosperms. CO2: Demonstrate proficiency in the experimental techniques and methods of appropriate analysis of Gymnosperms CO3: Comprehend the basic concepts of plant ecology and taxonomy and botanical nomenclature CO4: Analyse the characteristics of different plant communities. CO5: Evaluate the significance of herbarium. CO6: Analyse the implications of biometrics, numerical taxonomy and cladistics.
3.	BS 304	Paper – III Plant Anatomy and Embryology	At the end of the course the students will be able to CO1: Understand the fundamental concepts of plant anatomy and embryology CO2: Analyze and recognize the different organs of plant and secondary growth. CO3: Examine the structure and functions of ecosystem. CO4: Evaluate the structural organization of flower and the process of pollination and fertilization.

4.	BS 301	SEC -	On completion of this course the students will be
	D D 301	Nursery and	able to;
		Gardening	CO1: Understand the process of sowing seeds in
		ow woming	nursery.
			CO2: List the various resources required for the
			development of nursery.
			CO3: Distinguish among the different forms of
			sowing and growing plants
			CO4: Analyse the process of Vegetative
			propagation.
			CO5: Appreciate the diversity of plants and
			selection of gardening.
			CO6: Examine the cultivation of different
			vegetables and growth of plants in nursery and
			gardening
5.	BS 302	SEC- Biofertilizers	On the completion of this course, the students will
		and Organic farming	be able to;
			CO1: Develop their understanding on the concept
			of bio-fertilizer.
			CO2: Identify the different forms of biofertilizers and their uses.
			CO3: Compose the Green manuring and organic fertilizers.
			CO4: Develop the integrated management for
			better crop production by using both nitrogenous
			and phosphate bio fertilizers and vesicular
			arbuscular mycorrhizal (VAM).
6.	BS 404	Paper - IV - Cell	On the completion of this course, the students will
		Biology, Genetics and	be able to;
		Plant Physiology	CO1 : Identify the concept that explains chemical
			composition and structure of cell wall and
			membrane
			CO2: Compare the structure and function of cells
			& explain the development of cells.
			CO3: Have conceptual understanding of laws of
			inheritance, genetic basis of loci and alleles and
			their linkage.
			CO4: Comprehend the effect of chromosomal abnormalities in numerical as well as structural
			changes leading to genetic disorders.
			CO5: Develop critical understanding of chemical
			basis of genes and their interactions
			CO6: Analyse the effect of mutations on gene
			functions and dosage. Examine the structure,
			function and replication of DNA.
			CO7: Understand Water relation of plants with
			respect to various physiological processes.
			CO8: Explain chemical properties and deficiency
			symptoms in plants.
			CO9: Classify aerobic and anaerobic respiration.

			CO10: Explain the significance of Photosynthesis
			and respiration
			±
7.	BS 401	SEC-3: Green house	CO11: Assess dormancy and germination in plants. The students will be able to
/•	DS 401	Technology	
		Technology	CO1: Identify and practice safe use of tools,
			equipment and supplies used in greenhouse
			management careers
			CO2: Demonstrate an understanding of the
			composition, fertility and biology of soil and how
			they relate to good plant growth
			CO3: Demonstrate understanding of sustainable
			production techniques commonly used in the
			greenhouse industry
			CO4: Describe common greenhouse design
			features and the materials used to build them
			CO5: Distinguish the various types of
			environmental control systems used in closed
			environments
			CO6: Apply fertilizing techniques in a closed
			environment system
			CO7: Identify the most important greenhouse pests
			and diseases and be able to apply biological
0	DC 403	CEC 4.	remediation techniques
8.	BS 402	SEC-4:	On completion of this course, the students will be
		Mushroom culture	able to:
		and Technology	CO1: Recall various types and categories of mushrooms.
			CO2: Demonstrate various types of mushroom
			cultivating technologies.
			CO3: Examine various types of food technologies
			associated with mushroom industry.
			CO4: Value the economic factors associated with
			mushroom cultivation.
			CO5: Device new methods and strategies to
			contribute to mushroom production.
9.	BS 501	GE1 –	After completion of the course, the students will be
	25 501	Industrial	able to;
		Microbiology	CO1: Understand concepts of industrial
		iviter obtology	microbiology.
			CO2: Apply the usage of microorganisms in
			industry.
			CO3: Measure the growth of microorganisms.
			CO4: Analyze the use of microbes in industries
			such as dairy and medicines.
			CO5: Explain the concept of fermentation.
			CO6: Understand the use of patent with respect to
			industrial microbiology.

10	BS502	DSE1A: Biodiversity	After the completion of this course, the learner will
10.	D0302	and conservation	be able to:
		and conscivation	CO1: Develop understanding of the concept and
			scope of plant biodiversity.
			CO2: Identify the causes and implications of loss
			of biodiversity.
			CO3: Apply skills to manage plant biodiversity.
			CO4: Utilize various strategies for the conservation
			of biodiversity.
			CO5: Conceptualize the role of plants in human
			welfare with special reference to India.
11.	BS502	DSE 1B:	On completion of this course, the students will be
		Economic Botany	able to:
		·	CO1: Understand core concepts of Economic
			Botany and relate with environment.
			CO2: Develop critical understanding on the
			evolution of concept of organization of apex new
			crops/varieties, importance of germplasm diversity,
			issues related to access and ownership.
			CO3: Develop a basic knowledge of taxonomic
			diversity and important families of useful plants.
			CO4: Increase the awareness and appreciation of
			plants & plant products encountered in everyday
			life
			CO5: Appreciate the diversity of plants and the
10	DOFOA	DOE 10	plant products in human use.
12.	BS502	DSE 1C:	After completion of the course, the students will be able to;
		Seed Technology	CO1: Understand the theoretical orientation of
			seed development.
			CO2: Analyse the different ways of seed
			processing in different plants.
			CO3: Examine the various methods of Seed testing.
			CO4: Understand the method of seed production in
			different plants.
			CO5: Explain the concept of hybrid seed
			production.
13.	BS602	DSE2A:	On completion of this course, the students will be
		Plant Molecular	able to;
		Biology	CO1: Analyse the structures and chemical
			properties of DNA and RNA through various
			historic experiments.
			CO2: Differentiate the main types of prokaryotes
			through their grouping abilities and their
			characteristics.
			CO3: Evaluate the experiments establishing central
			dogma and genetic code.
			CO4: Gain an understanding of various steps in
			transcription, protein synthesis and protein modification.
			mounication.

14.	BS602	DSE2B:	On the completion of the course the students will be
		Tissue Culture and	able to
		Biotechnology	CO1: Understand the core concepts and
			fundamentals of plant biotechnology and genetic
			engineering.
			CO2: Develop their competency on different types
			of plant tissue culture.
			CO3: Analyze the enzymes and vectors for genetic
			manipulations.
			CO4: Examine gene cloning and evaluate different
			methods of gene transfer.
			CO5: Critically analyze the major concerns and
			applications of transgenic technology.
15.	BS602	DSE2C:	On completion of this course the students will be
		Analytical Techniques	able to:
		in Plant Sciences	CO1: Develop conceptual understanding of cell
			wall degradation enzymes and cell fractionation.
			CO2: Classify different types of chromatography
			techniques.
			CO3: Explain the principles of Light microscopy,
			compound microscopy, Fluorescence microscopy
			and confocal microscopy.
			CO4: Apply suitable strategies in data collections
			and disseminating research findings.